
CS352 Lecture - Data Models

Last revised January 18, 2017
Objectives:

1. To briefly introduce the entity-relationship model
2. To introduce the relational model.
3. To introduce relational algebra

Materials:

1. E-R Diagram example projectable

I. Introduction

A. We have seen that a database management system typically describes
a database at three levels of description.

1. The physical level - how the data is stored in files

2. The conceptual level - the “big picture”

3. The view level - individual views of the database for each
application

B. In order to be able to describe a database, we need some system of
notation and representation - a data model. This is true at all levels;
but, we are particularly concerned with description at the conceptual
and view levels. We must describe two things:

1. Data objects

2. Relationships between data objects

C. Historically, there have been five major types of data model - all of
which are represented by DBMS's in use today, though two are mostly
in legacy systems:

1

1. The hierarchical model (largely obsolete, but still used in some
legacy systems -we will not look at)

2. The network model (largely obsolete, but still used in some legacy
systems -we will not look at)

3. The relational model (the dominant model, and the focus of much
of the course)

4. Various object-oriented and object-relational models (we will look
at briefly in this course)

5. Various semi-structured models used in situations where
performance is critical (we will look at briefly in this course)

D. There is another model, called the entity-relationship model, which is
is not, per se, a basis for commercial products; but it is a very useful
tool for DESIGNING databases. Also, once the E-R model is
understood it gives us a language we can use in talking about the other
models. Thus, we will introduce it briefly today, though we will cover
it more extensively later in the course.

E. The textbook uses a university registration system as a source of
examples. We will use a college library for our examples today.

II. The E-R Model

A. When the E-R model is used for describing a database schema, the
information is generally presented in the form of an E-R diagram, like
the following (very simple) example. You will note its resemblance to
OO class diagrams. But the two styles of diagrams do use very
distinct notation, as we shall see.

2

can also be drawn this way

PROJECT

B. Basic definitions

1. Entity - an entity is an object that we wish to represent information
about.

a) Example in the above: Borrower, Book, Author

b) In an E-R diagram, an entity is represented by a rectangle.

2. Relationship - a relationship is some connection between two or
more entities:

a) Example: In the above, the “Checked Out” relationship between
a borrower and a book; the “Wrote” relationship between a
book and its authors.

3

Borrower

name
address

Book

callno
title

Author

name

due

Checked
Out

Wrote

b) Relationships can be 1:1, 1:many, or many:many.

(1) In the above, Checked out is 1 to many from Borrower to
Book - one borrower can have many books checked out, but
each book can only be checked out to one borrower at a
time.

(2) In the above, Wrote is many to many - a given book can
have multiple authors, and a given author can write multiple
books.

(3)Not illustrated in the above is a 1:1 relationship

c) In an E-R diagram, a relationship is represented by a diamond,
Multiplicity is represented by an arrow pointing to the “1” in a 1;1 or
1:many relationship. (Not at all the same meaning as an arrow in
UML!) Review question: How does UML represent multiplicity?

ASK

Numbers or “*” on the ends of associations. (Sometimes E-R
diagrams are written this way as well)

3. Attribute - Individual facts that we store concerning an entity or
relationship.

a) Example: In the above, we record for a Book entity its call
number and title. (In practice, we'd record a lot more as well)

b) Example: Relationships do not always have attributes, but
sometimes they do.

(1)For example, for a checkout, we want to record the date due.
(Note that this is a property of the relationship, not of either of
the participating entities - a given borrower may have books
checked out that are due on different dates, and a given book
only has a date due if it is currently checked out.)

4

(2)However, there are no attributes for the Wrote relationship.

c) In an E-R diagram, an attribute is represented by a rounded
rectangle connected to the entity or relationship it pertains to.
In practice, attributes can be omitted from E-R diagrams
because they make the diagram too cluttered.

C. We have noted that the E-R model is really a design tool, not the basis
for actual commercial systems. One reason for this is that there is no
natural physical representation for an E-R model.

1. There does exist a natural physical representation for sets of
entities: a file of records, wherein each record is an entity and
each field an attribute.

2. However, this is not true for relationships;

3. One of the major differences between different data models used in
commercial systems is how they physically represent relationships.

a. In the hierarchical model, relationships are modeled by physical
proximity. An entity and the entities it is related to are stored in
the same place in a physical file.

(This works fine for 1:1 and 1:many relationships, but creates a
problem for many-many relationships. The hierarchical model
avoids the need to repeat entities by using what are called
virtual records.)

b. In the network model, relationships are modeled by links
(pointers). A similar approach can be used in object-oriented
models.

c. Like the network model, some OO models use pointers to
model relationships.

5

d. Like the hierarchical model, some semi-structured models also
use physical proximity to model relationships. (We will look at
this later.)

III.The Relational Model

A. In the relational model, both entities and relationships are modeled the
same way, using relations or tables. (Two different names for the
same thing)

B. An entity set is represented by a table that has one row for each entity
and one column for each attribute. Typically, rows are stored in
successive records in a disk file.

1. For example, the following table might be used to model borrowers
(with attributes borrower_id, last_name, first_name, and address) in
our library.

borrower_id	 last_name	 first_name	address

12345	 Aardvark	 Anthony	 Jenks subbasement		
20174	 Cat	 Charlene	 Frost Basement	 	
...

Note: relational databases require their attributes to be atomic - hence
we have separated name into last_name and first_name.

2. An important property of each relational database table is that it
has a primary key - some subset of its attributes which serve to
distinguish one entity from all others. (In our example, we have
added a borrower_id attribute to serve this role, assuming no two
borrowers can have the same id, but we can’t guarantee that names
will be unique.)

C. A relationship set is represented by a table which has one row for each
relationship. It has one or more columns holding the primary key of
each of the entities it relates, plus additional columns for any attributes
of its own, if there are any.

6

1. For example, the following table might be used to model the
CheckedOut relationship, assuming the primary key of Borrower is
borrower_id and the primary key of Book is callno
borrower_id	callno	 date_due

12345	 QA76.91	 09-01-12
12345	 QA76.92	 09-01-12
12345	 QA76.93	 09-01-12
...

2. This simple structure has some profound efficiency implications,
though, especially when compared to the other models. For
example, consider the question “what are the titles of the books
that Anthony Aardvark has checked out?”

a) To answer this in a relational database.

(1)We first find the record corresponding to the row for
Anthony Aardvark in the file holding the Borrower table to
find out what his id is.

(2)Then we find the records in the file holding the CheckedOut
table for the rows that contain this value as the borrower_id.

(3)For each such book, we then find the records in the file
holding row the Book table for the rows that have the
corresponding callno values, in order to get the titles.

b) By way of contrast, with the hierarchical model, we still have to
find the right record for Anthony Aardvark, but then the book
records come physically right after it in on disk.

c) With the network model, we still have to find the right record
for Anthony Aardvark. But this record now holds a pointer to
the first Book record for books he has out, which in turn holds a
pointer to the second record ...

7

3. Historically, the amount of searching needed to locate desired
records in a relational database was one of the main reason why
the older models persisted. Early relational databases often
exhibited much poorer performance than network or hierarchical
ones.

a) One way to minimize this is to store 1:1 and 1:many
relationships in the table corresponding to the “1” entity rather
than in a separate table - e.g. instead of representing

Borrower BookChecked
Out

due
(attributes
 omitted for
 simplicity)

(attributes
 omitted for
 simplicity)

by

borrower bookcheckedOut

borrower_id

...

callno

...

borrower_id
callno

due

represent it by

borrower book

borrower_id

...

callno

borrower_id
due
...

by taking advantage of the fact that a given book can only be
checked out to a single borrower at a time.

8

(1)Of course, if the relationship is optional (as is the case with
a book being checked out), this requires the use of a null
value for an entity that is not in the relationship (for the
foreign key, even if there are no attributes for the
relationship)

(2) In the case where the relationship is 1:1, it might be
tempting to store foreign keys in both entity tables - but this
is problematic:

(a) Consistency - must update two tables if relationship
changes.

(b)DBMS enforcement of foreign key constraints on insert
(we will come to this later)

b) A lot of work has gone into indexing strategies to produce
major improvements in the performance of relational systems,
to the point where they dominate the database world except in
certain applications , typically involving massive databases,
where performance is a significant issue.

4. While modern relational database systems generally give very
good performance, for extremely large datasets efficiency
considerations have dictated a return to approaches similar to those
used in the hierarchical and network models - but only in situations
where the nature of the data is appropriate.

9

